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The far-field sound generated by compressible co-rotating vortices is computed by 
direct computation of the unsteady compressible Navier-Stokes equations on a 
computational domain that extends to two acoustic wavelengths in all directions. The 
vortices undergo a period of co-rotation followed by a sudden merger. The directly 
computed far-field sound is compared to the prediction of the acoustic analogy due to 
Mohring (1978, 1979), a modified form of the analogy developed by Lighthill (1952), 
and an acoustic analogy derived by Powell (1964). All three predictions are in excellent 
agreement with the simulation. Results of far-field pressure fluctuations from an 
acoustically non-compact, co-rotating vortex pair are also presented. In this case, the 
vortex sound theory over-predicts the sound by 65 % in accordance with the analysis of 
Yates (1978). 

1. Introduction 
As a step towards direct computation of aerodynamic sound generation in free shear 

flows, the far-field sound from co-rotating vortices is computed directly by solving the 
compressible Navier-Stokes equations. The difficulties encountered in the direct 
computation of aeroacoustic fields have been discussed in a review paper by Crighton 
(1988). These difficulties include the large extent of the acoustic field as compared to 
the flow field, the small energy of the acoustic field, the possibility that numerical 
discretization may serve as a significant source of sound, and errors arising due to 
inaccurate boundary conditions. 

Direct computations of the unsteady compressible Navier-Stokes equations for a 
domain that includes both the near and far field offer the advantage that near-field 
quantities, i.e. the source terms in an acoustic analogy, can be directly measured along 
with the far-field sound. This allows a direct check of acoustic theory which is desirable 
since not all of the assumptions invoked in the derivation of acoustic theory are 
satisfied in complex flows. For example, acoustic analogies separate the ‘sources’ from 
the propagation effects; this distinction is rigorous only for low-Mach-number flows 
(Crow 1970). Also, it is often necessary to use a simplified expression for the source 
terms. Furthermore, the source terms in many acoustic analogies are based on the 
incompressible part of the near field (Crow 1970). Since computational and 
experimental data cannot be decomposed into compressible and incompressible parts, 
an additional approximation is introduced when the full compressible data are used to 
evaluate the source terms. 

In addition to allowing a quantitative check of acoustic theory, knowledge of both 
f Also with Department of Aeronautics and Astronautics, Stanford University. 
$ Also with NASA-Ames Research Center. 



182 B. E.  Mitchell, S. K,  Lele and P. Moin 

near- and far-field quantities will facilitate the identification of coherent structures and 
other flow features responsible for sound generation in more complex flows. Hopefully, 
such knowledge will lead to effective strategies for modelling the noise generation and 
its control. 

The goals of this study are several. First, the basic process of sound generation is 
investigated in a simple unsteady flow. Secondly, the quantitative validity of existing 
acoustic analogies due to Lighthill (1952), Powell (1964), Howe (1975), and Mohring 
(1978, 1979) are tested. Investigating the ability of acoustic theory to predict the sound 
generated by co-rotating vortices is a necessary step towards understanding the 
applicability of acoustic theory in predicting the sound generated by more complex 
vortical flows such as mixing layers and jets where acoustic terms are specified using 
data from direct numerical simulations of either the incompressible or compressible 
Navier-Stokes equations. Thirdly, extensions of existing theories are pursued. Lastly, 
we seek to gain insight and develop computational techniques to facilitate future 
studies of sound generation in more complex flows. 

The sound from co-rotating vortices was chosen as a logical extension of the work 
of Colonius, Lele & Moin (1991, 1994) who computed the scattering of sound waves 
by a single compressible vortex. Co-rotating vortices, in contrast to the scattering of 
sound waves by a single vortex, generate sound due to the inherent unsteadiness of the 
flow field. The generated sound is predicted to be that of a rotating quadrupole (Powell 
1964; Muller & Obermeier 1967; Lyamshev & Skvortsov 1988; Yates 1978). 

In $2, we present a brief summary of relevant acoustic theory and specialize the 
results to point vortices. Section 3 introduces the flow and reviews the computational 
method, and in $4 the results of the simulations are presented and compared to 
predictions of aeroacoustic theory. A summary of conclusions is presented in $5 .  

2. Aeroacoustic theory 
Several aeroacoustic analogies have been proposed in the literature for predicting the 

far-field sound radiated by unsteady flows. Expressions for the far-field acoustic 
pressure given by application of existing theories to two-dimensional, acoustically 
compact, vortical flows are summarized in $2.1. These will be used in $4 to predict the 
sound generated by the co-rotating vortices. We observe that the vortex sound theory 
of Mohring (1978, 1979) is the simplest approach for predicting the sound from two- 
and three-dimensional, acoustically compact, compact vortical flows. This theory 
provides the leading-order quadrupole prediction of the far-field sound. 

A variety of assumptions are frequently invoked in aeroacoustic theory including 
compact flow, compact source, and low Mach number. The compact flow assumption 
requires that the vorticity is always zero outside a fixed finite region around the origin. 
The compact source assumption requires that the source region is acoustically 
compact. The low-Mach-number assumption requires that the near field is sufficiently 
incompressible. These assumptions will be invoked in some of the discussion that 
follows. 

2.1. Existing aeroacoustic theory 
The first acoustic analogy was due to Lighthill (1952) who rearranged the exact 
continuity and momentum equations into a wave equation with a source term on the 
right-hand side 

where Tij = pui uj + (P - ct p)  Sij + viscous terms 



The sound from a compressible co-rotating vortex pair 183 

and where P is the pressure, p is the density, ui is the velocity in the ith direction, and 
c, is the ambient speed of sound. The prime denotes a fluctuating quantity, i.e. 
p = po+p’. Typically, the source term is approximated by Ti, = po ui ui (Crow 1970; 
Obermeier 1985). Lighthill’s equation explicitly shows the quadrupole nature of the 
acoustic sources. The solution of (1) for an acoustically compact source and compact 
flow in two dimensions is 

where t* = t - r/cO cosh (Q and r2 = xk xk.  The derivation of (2) is given in Appendix 
A. Lighthill develops a three-dimensional solution and Ffowcs Williams & Hawkings 
(1968) derive a two-dimensional solution that is different, but equivalent to (2). 

Unfortunately, the area integral of Ti, is divergent for a compact flow with non-zero 
circulation, invalidating the use of (2) as a solution of (1). However, since the far-field 
acoustic pressure depends on the second time derivative of the area integral of T,,, (2) 
can still be used for compact flows with finite circulation. This is achieved by separating 
the steady component related to the net circulation from the more rapidly decaying 
unsteady part; the latter produces a net contribution to (2). The details of this 
procedure are explained in $4. The solution of (1) presented by Ffowcs Williams & 
Hawkings (1968) also suffers from divergence of integrals. 

Although the decay rate of the velocity is sufficiently rapid in three dimensions to 
ensure the convergence of the integral of Ti,, the algebraic decay rate still makes it 
difficult to know a priori where the integral can be truncated (Crow 1970). Such a 
truncation is necessary in a practical application of the theory. This difficulty is avoided 
in the acoustic analogy first introduced by Powell (1964) and later by Howe (1975): 

( - g - V ) P  = V . ( p O X U ) ,  ( 3 )  

where o = V x u.  This form yields a well-defined source region, i.e. the region of non- 
zero vorticity. Two assumptions have been made in deriving ( 3 ) :  that the flow is 
inviscid; and that the terms 

1 - - P - p  + v .  v ~ p u i u i - u - - ~ u i u i v p  aP 
a t 2  a 2 ( 1  c; 1 ( at 

which should be included in the source term on the right-hand side can be neglected. 
This is an excellent assumption for low-Mach-number moderate-Strouhal-number 
high-Reynolds-number flows; see Powell (1964) and Howe (1975). The first two 
neglected terms contribute to the viscous monopole discussed by Kambe (1984) and 
Obermeier (1985). In $4, we verify that the viscous monopole is negligible for co- 
rotating vortices. 

Note that ( 3 )  expresses the acoustic sources as a distribution of dipoles over the 
source volume and, since quadrupole sound is expected, there must be dipole 
cancellations in the integrals involved with its solution. Because of these cancellations, 
retarded time differences cannot be ignored (as was done between (A 4) and (A 5) in 
the derivation of (2)) and the resulting convolution integrals are expensive to evaluate 
numerically. 

There are two approaches to deal with this difficulty. The first is to solve (3) by the 
numerical solution of the wave equation. However, Crighton (1988) has cautioned that 
numerical errors may spoil the required dipole cancellations, leading to an erroneous 
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over-prediction of the far-field sound. Our results, presented in $4, do not suffer from 
this problem. Equation (3) can also be solved using a multipole expansion to determine 
the quadrupole component explicitly. This approach is the basis of Appendix C where 
it is shown that a multipole expansion of Powell’s equation can be used to derive 
Mohring’s equation. Powell (1 964) also performs a multipole expansion; however, his 
quadrupole term involves a product of velocity and vorticity, whereas the results of 
Appendix C only involve the vorticity. Since, (3) is being solved numerically, no 
assumptions about acoustical compactness are made. 

Mohring (1978, 1979) avoids the problems of Lighthill (1952) and Powell (1964) by 
predicting quadrupole sound from a source region of non-zero vorticity. Mohring’s 
three-dimensional result (Mohring 1978) is 

where Q, is given by the second-order moments of vorticity 

Qij(t) = J(Y x 001, uj ( 5 )  

Equation (4) assumes low Mach number, a compact flow, and a compact source. 
Mohring’s two-dimensional result (Mohring 1979) is derived in Appendix B using the 
method of matched asymptotic expansions following the derivation of Mohring’s 
three-dimensional result by Kambe, Minota & Takaoka (1993). The far field pressure 
fluctuations are predicted to be 

[Ql(t*) cos (20) + Q,(t*) sin(20)l d(, 

where t* = t - ( r / co )  cosh (0, 0 is measured with respect to the x-axis, and where the 
source terms, Q, and Q,, are the second-order moments of vorticity 

Q, = 2 /S.).OJ dx dy, Q, = l l ( y 2  - 2 )  o dx dy. 

Kambe et al. (1993) have proposed extending Mohring’s three-dimensional result to 
include higher-order multipoles and have demonstrated that the octupole term is 
important in the oblique collision of vortex rings. The form of the extension for the 
two-dimensional Mohring equation is presented in Appendix B. We observed that 
these higher-order multipoles are negligible for the co-rotating vortices. 

It is interesting to note that (4) cannot be directly converted to (6) in the usual way, 
see for example Lamb (1932, $302), by integration along the z-axis because assumptions 
of vorticity localization would be violated. In fact, such a direct conversion would 
under-predict the pressure levels by a factor of 2/3. A unified representation that 
includes Mohring’s two- and three-dimensional expressions is given in Appendix C. 

2.2. Co-rotating point vortices 
Although the sound from co-rotating viscous compressible vortices cannot be 
determined analytically, the simplified case of inviscid point vortices does yield 
analytical solutions. The key feature of point vortices is the periodicity of the flow, i.e. 
the vortices rotate around one another with period 8n2R2/r0  where R is the half- 
separation distance and I‘, is the circulation of each vortex (see figure 1 ; Uo and ro will 
be defined in $3). Our approach will be to use the known results for the near field of 
point vortices to prescribe the source region of Mohring’s equation (6) .  
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X 

FIGURE 1. Schematic G-J- diagram of flow configuration. 

The time-harmonic form of Mohring's equation given in Appendix B (equation 
(B 8)) can be expressed as 

F(r, 0, t )  = 0 H?) - [Q,(Q) cos (20) + Q,(Q) sin (20)l eciDt, (8) 1 6 4  d 3  (::) 
where Q1 and Q, are the Fourier transforms of Q, and Q, defined in (7). Equation (8) 
corrects an erroneous result developed by Lyamshev & Skvortsov (1988) using a 
different method. 

In the flow considered in this paper, the vortices are initially aligned along the y-axis 
and rotate clockwise around one another, 

(9) 

where 0, = I',/(4nR2) corresponds to the rotation rate of the vortices around one 
another. The appearance of 252, is due to the symmetry of the problem. Use of (8) and 
(9) then leads to a theoretical prediction for the sound from point vortices: 

Q, = - 2r0  R2 sin ( 2 0 ,  t) ,  Q, = - 2r0  R2 cos (20, t),  

where J,(z) and Y,(z) are the second-order Bessel functions of the first and second kind 
respectively. A characteristic solution for point vortices is shown in figure 2. The 
double spiral pattern clearly illustrates the rotating quadrupole nature of the sound. 
Note also that the sound waves are cylindrical in the far field. 

Co-rotating point vortices have also been considered by Powell (1964), Muller & 
Obermeier (1967), and Yates (1978). Muller & Obermeier (1967) derived a quadrupole 
expression for the far-field sound that is equivalent to (10). Yates (1978) considered the 
sound generated by acoustically non-compact co-rotating point vortices and developed 
a series solution containing quadrupoles, octupoles, and higher-order multipoles. 
Yates found that the coefficient of the quadrupole term is a strong function of the co- 
rotation Mach number, M ,  = U,/c,, where the co-rotation velocity, U, is U, = QR. On 
the basis of his results, Yates concluded that the co-rotating vortices are acoustically 
compact for M, < 0.1. As discussed by Yates, this is a somewhat surprising result since 
the ratio of the acoustic wavelength to R is 31 for M ,  = 0.1. In the compact limit, 
Yates' results are identical to (10). 

Equation (10) predicts that the pressure intensity, p, scales as U 7  in the acoustic far 
field. This differs from the three-dimensional result first reported by Lighthill (1952) 
who showed that the pressure intensity scaled as U s ,  but it is in agreement with other 
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FIGURE 2. Iso-contours of the far-field pressure for a typical solution of (10). Note the double 
spiral pattern and the nearly cylindrical nature of the waves in the far field. 

two-dimensional results, see for instance Ffowcs Williams & Hawkings (1968) and 
Muller & Obermeier (1967). 

3. Flow description 
Having summarized relevant acoustic theory and its application to point vortices, we 

now describe the compressible viscous heat-conducting co-rotating vortices that were 
simulated numerically. The numerical method will be described below in 8 3.1. 

The vortices are initially separated by distance 2R and the swirling flow associated 
with each vortex (when considered separately) achieves a maximum Mach number, 
Mo = Uo/co, at a radius ro from the centre of each vortex core. Figure 1 is a sketch of 
the flow with definitions of relevant parameters. The initial vorticity distribution for 
each vortex is Gaussian: 

(1 1) 
= 3 . 5 7 0 ~ - 1 . 2 5 ( r / r , ) ~  U 

YO 

with circulation ro = 2n(0.7)-lU0 ro. The fluid is assumed to be a perfect gas with ratio 
of specific heats y = 1.4 and a Prandtl number of 0.7. 

The flow is initially specified as solenoidal and homentropic since it was observed 
that this choice of initial conditions reduces the magnitude of the initial acoustic 
transient. For a homentropic solenoidal flow, the following Poisson equation can be 
solved to find the initial condition for the pressure and density: 

where it has been assumed that pressure and density are related by p/po = (y P / p ,  ct)’’Y. 
Note the similarity of (12) to the typical incompressible Poisson equation for pressure 

The dynamics of incompressible inviscid co-rotating vortices has received much 
analytical and computational attention, see for instance Waugh (1 992) and Melander, 

P-ii = -Poui,juj,i .  
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Zabusky & McWilliams (1988) and references therein. It has been shown that for 
initially circular vortices with constant vorticity, merger of vortices will take place if 
r o / R  > 0.59 where r,  is the radius of each vortex. An approximate criterion can be 
developed for Gaussian vortices by converting each to an equivalent constant-vorticity 
vortex by equating the first- and second-order moments of vorticity. The equivalent 
core radius is given by 2r0/1/5 and the criterion for merger is r , /R  > 0.67. Presumably 
for the case of small viscosity, the inviscid results hold for short times. 

We present results in $4 for a case with Mo = 0.56 and r o / R  = 0.15 with a Reynolds 
numbers based on the circulation of each vortex, Re = r0/v, of 7500. The co-rotation 
Mach number is M ,  = 0.06, and the period of rotation, 7, based on the initial velocity 
field is 7co/R = 105. This implies that the fundamental wavelength of the sound, A, 
which corresponds to 7/2 because of the symmetry, is A/R = 52.5. Note the disparity 
of scales since h 9 R. The computational domain extends to two wavelengths in all 
directions. 

The case shows merger after approximately 3 revolutions providing 6 cycles of far 
field pressure data for the co-rotating vortices followed by data through and after the 
vortex merger. Based on the criterion given above, merger was not expected. However, 
viscous effects and/or compressibility may affect whether or not merger takes place. A 
similar test case, identical in every respect except for the initial condition for density, 
p(x;  t = 0)  = po, did not merge. 

A second, contrasting, simulation was performed for a case that was acoustically 
non-compact and results are presented in $4.1. The parameters of this second case are 
M ,  = 0.56, ro/R = 0.45, M ,  = 0.18, Reynolds number based on circulation of 
Re = 226 x lo3 and acoustic wavelength of A/R = 17.5. The computational domain in 
this case extended to four wavelengths in all directions. Merger did not occur during 
the 5 rotations over which the computations were performed. Although the Reynolds 
number was quite large, no evidence of hydrodynamic instability was observed. Note 
that since the computations were initially specified free of disturbances, and since the 
numerical scheme has high spatial and temporal accuracy that minimizes the 
introduction of numerical disturbances, hydrodynamic instabilities were not expected. 

3.1. Computational considerations 
The two-dimensional unsteady compressible Navier-Stokes equations are solved 
numerically using a sixth-order compact Pad6 scheme given by Lele (1992) to evaluate 
spatial derivatives. The flow is advanced in time with fourth-order Runge-Kutta 
integration. This combination of spatial and temporal schemes has negligible numerical 
damping and thus preserves the physical property that, in the absence of viscosity, 
waves propagate unattenuated. This is essential for the accurate computation of sound 
waves which have a long spatial and temporal lifetimes and would be noticeably 
attenuated by numerical dissipation. 

An important computational consideration is the disparity of scales between the 
sound generating region (the vortices) and the sound field. The vortical flow region 
scales on the separation distance and core diameter whereas the sound field scales on 
the acoustic wavelength. For the first set of parameters mentioned above, the ratio of 
these scales, acoustic wavelength to initial half separation distance, is 52.5 to 1. 
Computations must adequately resolve the near field and still carry the grid out to the 
far field which is minimally defined as two acoustic wavelengths away from the vortices. 
A preliminary computation performed on a four-wavelength domain clearly 
demonstrated that a domain of two acoustic wavelengths was sufficient to reach the far 
field. 
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The disparity of scales is handled by the use of a non-uniform mesh which has a 
small uniform spacing in the near field and a larger uniform spacing in the far field. A 
region of grid stretching serves as a smooth transition between the near and far fields. 
Computations of monopole sound sources on both uniform and non-uniform meshes 
verified that accuracy is not affected by grid stretching provided that the mesh with the 
largest grid spacing resolves the sound waves. In the computations reported in this 
paper, the maximum local value of the grid stretching was 5 YO. 

For the first case (h/R = 52.5), a square domain of size - 115R to 115R 
corresponding to two wavelengths in all directions was used. The grid contained 429' 
mesh points and the near-field spacing was Ax/R = 0.026 which placed roughly 20 grid 
points across each vortex core, and the far-field spacing was Ax/R = 2.5 which allowed 
20 grid points per acoustic wavelength. Most of the points were located in the near 
field. The time step was Atc,/R = 0.012 and the CFL number was initially 0.72. 

For the second case (h/R = 17.5), a square domain of size -70R to 70R 
corresponding to four wavelengths was used. This computation used a grid containing 
4532 mesh points clustered such that most of the points were in the near field. The near- 
field spacing was Ax/R = 0.027 and the far-field spacing was Ax/R = 0.84. The time 
step was Atc,/R = 0.01 and the CFL number was initially 0.56. 

While it is feasible to construct a non-uniform mesh that resolves the long 
wavelengths of the expected sound waves, it is not possible to simultaneously resolve 
the initial acoustic transients. These transients involve sharp spatial gradients that are 
not resolvable on the far-field mesh. When simulations were first performed using the 
mesh described above, large-scale reflections of the initial transients occurred as the 
transients moved through the region of grid stretching. The resulting pressure 
fluctuations from the spurious reflections were at the same level as the computed 
sound. This problem was handled by the use of numerical filtering during the initial 
phases of the computation to remove the short wavelengths associated with the 
acoustic transient. For this purpose, a fourth-order-accurate compact Pad6 filter given 
by Lele (1992) (with the filter parameter, a, chosen as 0.475), which is very effective at 
removing only the shortest wavelengths, was used, Filtering smooths the transient as 
it moves through the grid stretching and thus reduces the amount of spurious 
reflections. The dangers of excessive filtering have been discussed by Mitchell, Lele & 
Moin (1992). 

A major numerical consideration is the choice of boundary conditions. The 
appropriate boundary conditions for the analysis of flows in free space are non- 
reflecting boundary conditions which allow waves to freely leave the domain. The 
zeroth-order boundary conditions described by Colonius, Lele & Moin (1993) were 
used in these computations. These boundary conditions are based on the work of Giles 
(1990). 

This formulation of the boundary conditions is only exact for one-dimensional waves 
travelling in, say, the 7-direction. In conventional applications of Giles' boundary 
conditions, the 7-direction is taken as the outward normal at the boundary. However, 
increased accuracy can be obtained by choosing 7 as the r-direction since the sound 
waves are nearly cylindrical for this flow. Tests with monopole sources showed that this 
choice of 7 significantly reduced reflection errors especially near the corners of the 
domain. As will be shown below, these boundary conditions proved quite adequate for 
the present problem. 
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4. Results and discussion 
In this section results of the simulation of co-rotating vortices are presented. A 

discussion of the near field is presented first followed by a discussion of the far field. 
Results from a second, contrasting computation that was acoustically non-compact are 
presented in $4.1.  

Figure 3 is a composite picture of the near-field vorticity, clearly showing a time 
period of co-rotation followed by a merger. After the merger, the resulting elliptical 
vortex evolves into a single circular vortex. Preceding the merger, the vortices slowly 
move closer together giving rise to an increased rotation rate in order to conserve 
angular momentum. The merger itself is quite sudden, occurring in less than 1/2 
revolution. 

The flow is at all times compressible with the density in the vortex cores initially 54 YO 
of ambient, increasing to 90% at the termination of the computations, tc , /R = 502. 
Similarly, the maximum Mach number in the domain decays rapidly from 0.63 to 0.17. 
The maximum Mach number is less than 0.3 after the first revolution. Computations 
of the first-order moments of vorticity show that the flow remains symmetric. 

The near-field dilatation is shown in figure 4 .  Quadrupole structures are evident with 
axes at 45" to the direction of rotation associated with each vortex. Since it is governed 
by the wave equation in the far field, the dilatation should decay as r-'/2 in the far field. 
Examination of the quantity rllz V - u  indicated that this far-field behaviour was well 
developed by 1.2 wavelength from the centre of the flow domain. 

According to (6), the connection between the near-field dynamics and far-field sound 
is the third time derivative of the second-order moments of vorticity. Shown in figure 
5 are Q, and Q, as defined in (7) .  The area integrals were computed in a box of size 
- 4 R  to 4 R  in both the x- and y-directions. The frequency and amplitude of the 
source terms increase slightly with time as the vortices move closer together. Figure 5 
clearly shows a peak in amplitude corresponding to the vortex merger. Note that after 
merger, the frequency approximately doubles and the amplitude diminishes significantly. 
The large fluctuations near tc , /R = 0 are the result of transients related to the start of 
the computation which are amplified due to the third time derivative. 

Shown in figure 6 is a contour plot of the far-field pressure at an instant in time when 
the vortices are still co-rotating; note the similarity to figure 2. There is also evidence 
of small reflection errors from the boundary. 

The temporal evolution of the far-field pressure fluctuations at distances of 1/2 
wavelength and 2 wavelengths are shown in figure 7 .  Note that the nearly sinusoidal 
nature of fluctuations shows a slight increase in both frequency and amplitude as time 
moves towards merger; the initial large peak is the acoustic transient. The simulations 
also show a peak in amplitude at merger. The increase in amplitude can be understood 
by reference to the results for point vortices developed in $2.2, where the far-field 
pressure fluctuations were shown to scale as R-4. As the time progresses towards merger, 
the separation distance, R, decreases giving rise to increased sound levels. The 
increased pressure fluctuations can also be explained by recognizing that as the vortices 
approach one another, the rate of rotation must increase to conserve angular 
momentum. Equation (10) can be manipulated to show that the pressure fluctuations 
scale as 52;. The pressure fluctuations shown in figure 7 are 0.01% of the ambient 
pressure. 

Also shown in figure 7 is the prediction of (6) where source terms are the same as 
shown in figure 5.  The integral in (6) was computed using an adaptive quadrature 
routine; the upper limit of integration was taken as c0sh-l [c,(t - to ) / r ]  where to was 
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(4 

FIGURE 3. Four views of the near-field vorticity showing (a) co-rotation ( tc , /R = 53), (b) merger 
( tc , /R = 343), (c)  post-merger vortex ( tco/R = 370), and (d) final circular vortex ( tc , /R = 502). The 
contour levels are (a) wmln = - 13.5, Aw = 0.5; (b) wmln = - 1.0, Aw = 0.05; ( c )  wmln = -0.9, 
A u  = 0.05; and (d) wmIn = -0.8, Aw = 0.05 where the vorticity has been made dimensionless by 
reference to R and co. 

FIGURE 4. Contour plot of the near-field dilatation ( (V.u)  R/c , )  during co-rotation ( tc , /R = 239). 
The contour levels are centred around zero with increment f 0.0012. 
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FIGURE 5. Plot of the source terms for Mohringkequation, (6), as defined in (7): -, Q,/(c,R); 
and ---, Q,/(c ,  R). 

FIGURE 6. The far-field pressure (ambient removed) at tc,/R = 185. The contour levels are from 
P/@, ci) = k4  x The ‘cross’ pattern is a plotting illusion caused 
by the high grid densities near the x- and y- axes. 

with AP/@,c;) = 0.05 x 

chosen to be 7/4. This choice of to was sufficient to allow transients associated with the 
start of the computation to leave the near field. Figure 7 shows excellent agreement 
between (6) and the results of the direct computation. Agreement is within 3 %  
everywhere even at distances as close as 1/2 wavelength for the amplitude of the 
pressure fluctuations. Note that the mean pressure in the computation changes after 
merger. The excellent agreement even at distances as close as 1/2 wavelength was 
anticipated by the analysis in Appendix B. 

These results suggest that Mohring’s two-dimensional acoustic analogy can be used 
with confidence in low-Mach-number two-dimensional compact vortical flows. Kambe 
& Minota (1983) and Kambe (1986) have compared experiments with vortex rings to 
predictions of Mohring’s three-dimensional result and have also found good 
agreement. 
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FIGURE 7. Far-field pressure traces at (a) r/h = 1/2 and (b) r /h  = 2 showing the results of the 
simulation (-), and the prediction of Mohring’s equation (---). Both measurement points are 
located on the positive y-axis. 

The far-field sound was also predicted using the acoustic analogy originally due to 
Powell (1964) where the wave equation was solved numerically with source terms 
computed using data from the simulation. Equation (3) was solved using sixth-order- 
accurate central difference for spatial derivatives, fourth-order Runge-Kutta time 
advancement, and the non-reflecting boundary conditions presented by Engquist & 
Majda (1979). The computational mesh and time step were the same as those used in 
the direct simulation of the Navier-Stokes equations. The prediction of the Powell 
analogy (with the right-hand side of (3) evaluated from the direct numerical 
simulation) is compared to the results of the simulation in figure 8. The agreement is 
within 5 O h .  Theoretical derivations typically assume that the density is constant, see for 
instance Obermeier (1985). However, when the source terms were computed by taking 
the density at the ambient value, the predicted far-field pressure amplitude was 
approximately 15 % too large. 

As was discussed in 32.1, a direct application of Lighthill’s analogy in two 
dimensions suffers from divergent integrals. One approach to avoid this difficulty is to 
decompose the velocity field into a leading-order component that decays as l / r  and a 
component that decays faster than l/r.  Thus 

ui = zii + iq, (13) 
where uli = 2r0 xJ(2nr2). (14) 
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FIGURE 8. Far-field pressure traces at r / h  = 2.0 showing the results of the simulation (-); the 
numerical solution of Powell’s acoustic analogy (---) ; and the prediction of the modified Lighthill 
equation (-.-). The measurements point is the same as in figure 7(b) .  

Approximating the Lighthill source term as 

and using the decomposition introduced above yields 

(15) 
Since solutions of Lighthill’s equation depend on the second time derivative of T,, the 
last term in (1 5 )  can be eliminated because of the time invariance of the circulation and 
an equivalent source term is 

(16) 
The source terms decay faster than l /r ,  and the far-field pressure is given by (2). It 
should be noted that in arriving at (16), we have ignored variations in the density 
(specifically the second time derivative of the density) and thus it is onIy an 
approximation to Ti. The results obtained by using the modified terms, as evaluated 
from the simulation, in the right-hand side of (2) are shown in figure 8. The agreement 
is quite good. We also attempted to solve Lighthill’s equation numerically using the 
same numerical method used to solve Powell’s equation; however, we were unable to 
recover a meaningful far field. We believe this difficulty is due to the slow algebraic 
decay rate of both the Lighthill source term and the modified Lighthill source term. 

Kambe (1984) and Obermeier (1985) have shown that the presence of viscosity adds 
a monopole contribution to the far-field sound with amplitude proportional to where 
S is the area integral of the entropy. This monopole contribution was computed based 
on S taken from the simulations and found to be at least two orders of magnitude 
smaller than the quadrupole contribution. This is in agreement with the scaling 
suggested by Obermeier (1985). 

4.1. Acoustically non-compact case 
By way of contrast to the excellent agreement between prediction and simulation 
shown in figure 7, a second simulation was performed for which M ,  = T,,/(47cRc0) = 

0.18. According to Yates (1978), this case should be acoustically non-compact with 
pressure fluctuations significantly smaller than the predictions of Mohring’s equation. 

T.. = pu. u. 
$3 2 3  

Tij = p[& Gj + oi iij + ii6 Gi + ii* Gj]. 

a 

Ti = p [zii oi + oi iii + 21,. 41. 
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FIGURE 9. Far-field pressure traces at r lh  = 3.6 for the case of high fluctuating Mach number showing 
the result of the simulation (-); the prediction of Mohring's equation (---); the prediction of 
Powell's acoustic analogy (.. ....) ; and the prediction of the modified Lighthill equation (- .-). The 
measurement point is located on the positive y-axis. 

Figure 9 is a comparison of the pressure fluctuations at 3.6 wavelengths to the 
prediction of (6). The predicted pressure fluctuations are 65 % too high. The magnitude 
of the overprediction is in agreement with the analysis of Yates (1978) suggesting that 
the overprediction is the result of acoustical non-compactness. Although there is a 
slight phase difference, the frequency of the prediction is the same as the simulation. 
Also shown in figure 9, are the prediction of Powell's analogy and the prediction of the 
modified Lighthill equation. The Powell prediction, which makes no assumptions 
about acoustical compactness, is in good agreement with the simulation whereas the 
Lighthill's result, which does assume acoustical compactness, is quite similar to the 
prediction of (6). 

There is increased compressibility in the near field for this case with the maximum 
Mach number decaying from 0.72 to only 0.68 over the duration of the simulation. If 
we define the fluctuating Mach number as the difference between the maximum Mach 
number and the co-rotation Mach number, then the fluctuating Mach number is 
around 0.52. By way of contrast, the fluctuating Mach number for the first case 
presented is typically around 0.12. 

For a different problem which also involves the merging of vortices, the temporal 
evolution of compressible shear layers, Lele & Ho (1994) found that the decreased 
acoustic output is a direct effect of the compressibility on the hydrodynamic flow. It 
was also found that the accuracy of acoustic theory decreased with increased 
compressibility. 

5. Conclusions 
Direct computations of the far-field sound from co-rotating compressible vortices 

have been successfully performed by solution of the Navier-Stokes equations on a grid 
that includes both near and far fields. In order to perform these computations, the 
concerns raised by Crighton (1988) had to be successfully addressed. 
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Results from two cases were presented. In the first case, the vortices undergo a 
sudden merger after three revolutions. The far-field pressure fluctuations peak at 
merger and are significantly reduced afterwards. For this case, which was acoustically 
compact and of low Mach number, the two-dimensional Mohring equation predicted 
the far-field pressure fluctuations to within 3% even at distances as close as 1/2 
wavelength. Predictions based on Powell’s analogy and a modified form of Lighthill’s 
analogy were also in good agreement with the simulation. The monopole contribution 
to the far-field pressure due to viscosity was found to be negligible. 

The second case was acoustically non-compact with increased near-field com- 
pressibility and the vortices did not merge. For this case, the two-dimensional Mohring 
equation and the modified Lighthill analogy overpredicted the far-field pressure 
fluctuations by approximately 65 %. This magnitude of the overprediction was in 
agreement with the analysis of Yates (1978) who considered acoustically non-compact 
co-rotating point vortices. Powell’s analogy, which was solved numerically without 
assuming acoustical compactness, was able to predict this flow accurately. 

Three important conclusions can be drawn about aeroacoustic theory from this 
work. First, theories based on moments of vorticity (Mohring 1978, 1979) offer a 
convenient and accurate means to predict far-field sound from compact low-Mach- 
number flows. Secondly, the direct numerical solution of Powell’s equation can be used 
to determine far-field sound with a minimum of assumptions even if the near field is 
acoustically non-compact. Thirdly, although a conventional application of Lighthill’s 
equation is not appropriate for compact two-dimensional flows because of divergent 
integrals, the Lighthill source terms can be modified in certain simple situations to yield 
accurate predictions. 

Although the numerical solution of Powell’s equation can be used to determine the 
far-field sound, the expense of this approach as compared to solving Mohring’s 
equation (or (2)) should be kept in mind. Mohring’s equation can be solved in a few 
seconds of supercomputer time whereas Powell’s equation requires a few hours. If the 
Navier-Stokes equations had only been solved in the near field to obtain source terms, 
the use of Mohring’s equation to predict the far-field sound would have used 
approximately one fourth of the computational time of the full near- and far-field 
Navier-Stokes solution. The similar use of Powell’s equation would have used 
approximately 3/4 of the total computation time of the full near- and far-field 
Navier-Stokes solution. However, even though it is computationally more expensive, 
the numerical solution of Powell’s equation was found to be the only method to 
accurately predict the acoustically non-compact case discussed in $4.1. 
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Appendix A. The solution of Lighthill’s equation in two dimensions 
Lighthill’s equation is 

where we have dropped the prime superscript in (A 1) and in what follows. The 
simplest way to derive the solution in two dimensions is to take the Fourier transform 
of (A 1) to transform it into a Helmholtz equation: 

where S(t)  = sTrn g(Q) exp (-iQt) dQ provided that jTrn S(t)z dt exists. The solution of 
(A 2) can be found in the usual way by means of the appropriate Green’s function, 

where r^ = Ix -yl and Hf)(z) is the zeroth-order Hankel function. Using integration by 
parts and the divergence theorem twice, the spatial derivatives can be brought outside 
the integral sign: 

Furthermore, if zj is acoustically compact, then r^ is well approximated by r = 1x1 and 
(A 4) becomes 

Performing the spatial derivatives and only retaining the leading-order terms in Y, and 
recognizing that in the far field the pressure and density fluctuations are related via 
P = c t p  we obtain 

Since we are interested in the far-field solution for P, Hr)(z) will be approximated as 
- Hf)(z). 

The solution in the time domain is found by inverse transforming j ,  i.e. 

00 

P(x, t )  = p ( x ,  52) exp (- iQt) dQ, (A 7) s_, 
and making use of the integral definition of the Hankel function (Watson 1944, p. 180) 

2i rn 
(A 8) Hf)(z) = eizcosh(8 d,C, 

to arrive at 

where t* = t-r/c,cosh(o. 
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If the approximation Hr)(z) z -Hr)(z) had not been made, the final result would 
have been 

This form of the result is not as convenient for numerical quadrature because of the 
exponential growth of cosh (25). 

Appendix B. Development of a two-dimensional vortex sound theory 
In this Appendix, we summarize an alternative derivation of Mohring's two- 

dimensional result using the method of matched asymptotic expansions. This 
derivation is similar to the derivation given by Kambe (1986) and Kambe et al. (1993) 
of Mohring's three-dimensional result. The basic approach will be to assume that the 
sound-generating region of the flow is a low-Mach-number compact vortical region for 
which a series expansion for the velocity potential, valid outside of the vortical region, 
can be found. By comparing this near-field expansion to the far-field wave solution, the 
far-field sound will be determined. This procedure depends on the vortical region being 
acoustically compact in order for there to be a well-defined intermediate region 
between the vortical region and the acoustic far field. The acoustical compactness 
condition is equivalent to a low-Mach-number assumption. 

The starting point is the two-dimensional Taylor series expansion for the velocity 
potential given by Kambe (1992, personal communication) (see also Weston & Lu 
1982) valid for an incompressible compact flow in the absence of solid boundaries : 

P I P ,  ... P, a PI a P, ... apnin(r)], 

where r and 0 are the usual polar coordinates with 19 measured counter-clockwise from 
the x-axis and where 

Q p l  p ,  ... p ,  = l ( ~  x x p ,  ... x p ,  dx- (B 2) 

We are assuming that lengths have been made non-dimensional with respect to some 
characteristic length 1 associated with the flow in the near field. The near-field pressure 
implied by (B 1) for large r/l is -p,a@/at. Since the circulation and Qi are time 
invariant for a two-dimensional compact flow (Q, is a multiple of the linear impulse), 
the leading-order near-field pressure is given by 

(B 3) P = -"Q..a.a.ln(r). P .  
4n 23 3 

In the far field, the pressure is governed by a homogeneous wave equation: 

($$-v) P = 0. 

A matched asymptotic expansion is performed to find the far-field pressure due to 
a harmonic source. The Fourier transform of (B 3) yields a harmonic expression for the 
near-field pressure : 
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where S(t) = s-", $(Q) exp (- iQt) dQ. In the far field, the wave equation is transformed 
into a Helmholtz equation: 

which has the general solution (in terms of outgoing waves) 

v$+ (Q/co)2 $ = 0, 

1 

where APl& ... p ,  is a coefficient tensor to be determined, and where H r )  (Qr/co) is the 
zeroth-order Hankel function of the first kind. The asymptotic limit of (B 5)  for small 
Qr/co is 

Performing the matching between these two regions yields to leading order 
A = Ai = 0 and 

Thus to leading order, the sound is predicted to be a quadrupole. The ambiguity in the 
matching discussed and resolved by Crow (1970) and Kambe et al. (1993) does not 
arise in our approach since the Fourier-transformed equations are being considered. 
The solution for the far-field pressure is then 

aij = +PO Q Qij. (B 7) 

F = $pa 0 Qij ai aj H:) (Qr/co).  

This result can be simplified by evaluating the spatial derivatives and retaining only the 
leading-order terms in r to yield 

where the appearance of higher-order Hankel functions is a result of the following 
relationship for derivatives of the Hankel function (Abramowitz & Stegun 1972, p. 
361): 

It is interesting to note that no terms are neglected in (B 8) since the additional term 
that results from performing the spatial derivatives is multiplied by Qii = 0. So we 
expect the quadrupole term to be accurate in some intermediate region between the far 
field and the near field (where r / l  is large and Qr/c ,  is small) and not just in the far field. 

The pressure field is obtained by inverse transforming p(Q) and using the integral 
definition of the Hankel function (Watson 1944, p. 180), 

2i mtxi /Z  

HF)(z) = ;lo ,iz cosh (0 cosh (28 dg, 

and can be shown to be 

m t x i / 2  

P(x, t )  = -+ 1 cosh (28 r+ &,(t*)] dg 
4xc0 

where t* = t - ( r / co )  cosh (0. 
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Since Fourier transforms have been used to express (B 4) and (B 5 ) ,  (B  10) cannot 
describe any transient effects associated with initial conditions. 

Equation (B 10) can be re-expressed as 

where 

oo+ni/2 

P(x,  t )  = + [ cosh(2Q[Ql(t*)cos(20)+Q,(t*)sin(20)]d~, (B 12) 
8xco 0 

Q, = 2 [ [xyw dx dy, Q, = ”(y2 - x 2 )  w dx dy. 

Equation (B 12) is equivalent to Mohring’s two-dimensional result (Mohring 1979). 
The form of (B 12), also given in Mitchell et al. (1992), is not convenient for numerical 
quadrature because of the exponential growth of cosh(2Q. For large z, the 
approximation Hr’(z) x -Hf)(z) may be used in (B 8 ) ,  modifying (B 12) to 

P(x, t )  = [Ql(t*) cos (20) + Q,(t*) sin (20)l dc. 
871:co Sm 0 

We have used both forms and have found (B 14) to be more robust. The predictions 
of (B 14) are compared to the directly computed pressure in $4. 

Kambe et al. (1993) proposed an extension to Mohring’s equation that includes 
higher-order multipoles. While their approach does include terms that are higher order 
in Mach number than the leading-order quadrupole, it does not appear to be a 
complete higher order theory in the sense of Crow (1970). However, they show that 
these higher-order terms are important in the oblique collision of vortex rings. The 
two-dimensional form of these higher-order multipoles follows directly from the 
derivation just presented by including more terms in (B 3) .  The resulting equation is 

where the superscripts on Q, represent differentiation with respect to t*. 

Appendix C. Multipole expansion of Powell’s analogy 

demonstrates how Powell’s equation can be used to derive Mohring’s equation. 
In this Appendix, a multipole expansion of Powell’s equation is performed that 

First, we review multipole expansion solution techniques for the wave equation 

($$-V.)P = g ( x ,  t ) .  

In three dimensions, the multipole solution of the wave equation is (see Goldstein 1976) 

where 
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The result in two dimensions is quite similar and can be found using the same method 
given in Goldstein: 

m+rri/Z 

P = 'so 2.n 

with A, Bi, Cij as defined above. The above solutions assume that the sources are 
acoustically compact and that the wave equation is being solved in free space. 

We now use the general multipole solution to manipulate an extended version of 
Powell's equation in order to explicitly determine the monopole, dipole and quadrupole 
contributions to the far-field sound. We shall use a version of Powell's analogy 
extended to allow a force,f, applied to the source region 

(~~-v')P=Pov.(oxu+v--f u2 2 , 

where a low-Mach-number assumption has been used to set the density equal to po. In 
what follows, we also assume that there is a compact flow and a compact source. 

The monopole term, A, can be shown to be zero using the divergence theorem. The 
dipole term after integration by parts and use of the divergence theorem becomes 

B, = -pO~(oxu+v--f : ), dx. 

Using the inviscid Euler equations yields 

B, = aqp, 

c, = a2ij/at, 

where q is the linear impulse. In a similar manner, the quadrupole term can be shown 
to be 

where the angular impulse is related to the tensor 9ii, i.e. the angular impulse is given 
by ' i j k  4 k .  

The net source terms implied by this multipole expansion are 

(dij(t) 6(x)) + . . . , a a 2  (-g - v 2 )  P = -G ($(t) 6(x)) +- axi axi 

which is valid in both two and three dimensions. The difference in the two cases is given 
by differences in the free-space Green's function and the expressions for and 9ii. In 
three dimensions, and $i are given as (Cantwell 1986, Batchelor 1967): 

.P13d) = @ s[x x oIi dx3, 9lY) = 2 3 s xi [x x oIj dx3, (C 2) 

and in two dimensions: 

s s 2 
( 2 d )  - PO .Plad) = pa [x x 01, dx2, 2Iii - - xi [x x oIj dx2. 

This form of the acoustic analogy shows that sound is generated by fluctuations in 



The sound from a compressible co-rotating vortex pair 20 1 

and 26j are proportional to moments of the vorticity field, it is clear 
that certain types of vortex motion give rise to sound radiation. In the absence of 
applied forces and solid boundaries, the linear impulse is an invariant of the flow and 
no dipole sound is expected. 

These solutions of Powell’s analogy are identical to Mohring’s solutions in both two 
and three dimensions. 

and 2?ij. Since 
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